
Building a Mobile App with Delphi and FireMonkey for Experience Delphi & C++Builder

developers.

Assumptions:

● Store images in DB Blob

● Create a report in HTML with images embedded using Data URI (see below)

● Use share sheet to share report

Agenda:

● Training Overview

■ Schedule

● (Roughly 8 hours of training

■ Agenda

● Goal

○ Help you get up to speed for mobile development with

FireMonkey

○ This is a workshop - we are developing an app together

○ Expectations

■ Experienced with VCL & Delphi

■ Experience with Database development

■ Follow along with the exercises

○ Showing Delphi, but it will mostly work the same in

C++Builder

■ Useful Information

● There are many links to the DocWikis

○ http://docwiki.embarcadero.com/RADStudio/en/

○ http://docwiki.embarcadero.com/Libraries/en/

○ http://docwiki.embarcadero.com/CodeExamples/en/

● Shortcuts on slides:

○ docwiki:RADStudio/FireMonkey_Platform_Services

○ Translates to

http://docwiki.embarcadero.com/RADStudio/en/FireMonke

y_Platform_Services

● You have a copy of the slides and there are notes with more

information and comments in the “speaker notes” section

■ App Specs

● Project log collection application

● Uses Embedded InterBase ToGo (or the free IBLite)

● Database has projects with child log entries

○ Log entries include: DateTime, Picture, Geolocation,

Orientation, Accelerometer, User notes

● Screens

○ Edit project details

○ Add logs to project

https://en.wikipedia.org/wiki/Data_URI_scheme
http://docwiki.embarcadero.com/RADStudio/en/
http://docwiki.embarcadero.com/Libraries/en/
http://docwiki.embarcadero.com/CodeExamples/en/
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Platform_Services
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Platform_Services

○ Browse & edit projects

○ Browse & edit project log entries

○ Reporting

■ Export project with log entries as JSON or HTML

■ Save to file or share via email, etc.

● Introduction to FireMonkey

○ What is FireMonkey

■ FireMonkey is similar to VCL

● Your VCL experience is applicable for FireMonkey

● It is not a 1:1 mapping of the VCL

○ Eg: TLabel.Text instead of TLabel.Caption

● Designed to be cross-platform:

○ iOS, Android, macOS, & Windows

○ Other platforms like Linux via 3rd parties

○ Cross platform is in its DNA

● Still uses the RTL you know and love

● FireMonkey also includes platform services and other non-visual

components

● Rendered by GPU

○ Uses DirectX on Windows

○ OpenGL on macOS

○ OpenGL ES on iOS & Android

● Check out the Quick Start Guide

○ docwiki:RADStudio/en/FireMonkey_Quick_Start_Guide_-

_Introduction

■ The FMX Form

● Uses floating point numbers for positions, sizes, etc.

● Supports animation and graphical effects

● Very flexible controls

● Many different layout options

● All components are nestable

● The FMX file is very similar to a VCL file

■ Understanding Platform Default Behavior

● Many properties have an option of PlatformDefault value

○ This will change the value based on the platform

○ Tab Controls PlatformDefault property

http://embt.co/tabtutorial

● The Style can apply properties too based on platform

○ This is controlled with the StyledSettings property

○ Settings text parameters

http://embt.co/SettingTextParameters

● Change the ControlType property from Styled to Platform

○ Currently supporting iOS and Windows with Android

coming soon

http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Quick_Start_Guide_-_Introduction
http://docwiki.embarcadero.com/RADStudio/en/FireMonkey_Quick_Start_Guide_-_Introduction
http://embt.co/tabtutorial
http://embt.co/SettingTextParameters

○ More information: http://embt.co/FMXNative

■ FMX Layouts

●

■ FireMonkey Platform Services

● A platform service is a FireMonkey interface that defines some

functionality that might or might not be implemented on a

particular run-time platform

○ Allows for different functionality and implementation per

platform

● FireMonkey implements many platform services

○ 52 services in 13 units

● You can implement your own platform services

○ Use TPlatformServices.AddPlatformService and

TPlatformServices.RemovePlatformService

○ For example, you can unregister one of the built-in platform

services and replace it with a new implementation of the

platform service that is tailored to fit your needs.

● More information on Platform Services

○ http://embt.co/PlatformServices

○ FireUI - Technology to Fine Tune Your UI

● Device Views:

● Multi-Device Preview: Gives you immediate preview of your UI on

multiple platforms

● FireUI LivePreview: View your UI on your physical device in real

time

● docwiki:RADStudio/en/FireUI_Live_Preview

■ Device Views

● Allows you to add platform specific customized views to your

layout

● Left Image:

http://docwiki.embarcadero.com/images/RADStudio/Rio/e/0/06/Vie

wsDropDownMenu.png

● docwiki:RADStudio/en/Using_FireMonkey_Views

■ Multi-Device Preview

● Accessible via: View > Tool Windows > Multi-Device Preview

● Image

http://docwiki.embarcadero.com/images/RADStudio/Rio/e/7/7e/M

DPreviewWindow1.png

● docwiki:/RADStudio/en/Multi-Device_Preview

○ FMX Compared to VCL

■ Similarities

■ What are advantages?

■ What are limitations?

○ Getting Started

http://embt.co/FMXNative
http://embt.co/PlatformServices
http://docwiki.embarcadero.com/RADStudio/en/FireUI_Live_Preview
http://docwiki.embarcadero.com/RADStudio/en/Using_FireMonkey_Views
http://docwiki.embarcadero.com/images/RADStudio/Rio/e/7/7e/MDPreviewWindow1.png
http://docwiki.embarcadero.com/images/RADStudio/Rio/e/7/7e/MDPreviewWindow1.png
http://docwiki.embarcadero.com/RADStudio/en/Multi-Device_Preview

■ Hello World on Windows

● Setup the Environment

○ General iOS vs. Android requirements

○ Downloading SDKs

○ Emulators

○ Introduction to Styles

○ Provisioning Apple devices

○ Basic architectures

■ Hello world on mobile

● http://embt.co/Create1stApp

● App overview for the app we are building

○ Project log collection application

■ Uses Embedded InterBase ToGo (IBLite)

■ Database has projects with child log entries

● Picture

● Sensor information

○ Geolocation

○ Information about how the camera was facing when the

photo was taken

○ http://docwiki.embarcadero.com/Libraries/en/System.Sens

ors.Components.TLocationSensor

○ http://docwiki.embarcadero.com/Libraries/en/System.Sens

ors.Components.TOrientationSensor

○ http://docwiki.embarcadero.com/Libraries/en/System.Sens

ors.Components.TMotionSensor

● User notes

○ Screens

■ Edit project details

■ Add logs to project

■ Browse & edit projects

■ Browse & edit project log entries

○ Reporting

■ Export project with log entries as HTML file

● Embedding

■ Export project as JSON

■ Share via Share Sheet

● Embedding InterBase

○ Creating InterBase database

■ [There are two tables: Projects and Log Entries, the latter has the image

blob]

■ Also multiple users and the login will authenticate with InterBase

○ Using the deployment manager

○ LiveBindings

○ Just a simple example showing some data

http://embt.co/Create1stApp
http://docwiki.embarcadero.com/Libraries/en/System.Sensors.Components.TLocationSensor
http://docwiki.embarcadero.com/Libraries/en/System.Sensors.Components.TLocationSensor
http://docwiki.embarcadero.com/Libraries/en/System.Sensors.Components.TOrientationSensor
http://docwiki.embarcadero.com/Libraries/en/System.Sensors.Components.TOrientationSensor
http://docwiki.embarcadero.com/Libraries/en/System.Sensors.Components.TMotionSensor
http://docwiki.embarcadero.com/Libraries/en/System.Sensors.Components.TMotionSensor

● Setup Users and Login Screen [Reuse the Home Screen projects]

■ Home and Login Screens

● Home Screen

● Login Screen

■ Lab Exercise: Home and Login Screens

■ Multiple screens (Home Screen to Login Screen)

● uHomeForm2.Form2Home.Hide; //Hide the Home Screen.

● uLoginForm2.Form2Login.Show; //Show the Login Screen

■ Lab Exercise: Multiple screens

■ Authenticate user against InterBase

● DataModule

● FDConnectionIBLite.Params.Values['USER_NAME']

● FDConnectionIBLite.Params.Values['Password']

● FDConnectionIBLite.Connected := True;

■ Lab Exercise: Authenticate user against InterBase

○ Working with Styles

■ Working with Styles

■ Default Styles

■ Lab Exercise: Working with Default FMX Styles.

■ Resource Naming and Referencing

■ Style Resource Storage: Multi-Platform TStyleBook

■ Platform Styles

■ Custom Styles

■ Lab Exercise: StyleBook and Working with Custom Styles.

■ Nested Styles

■ Style-Resource Search Sequence

■ Form Style

○ App Navigation

■ TTabControl component

■ Lab Exercise: How to use Tab Components to Display Pages

■ .Show and .Hide methods

■ Glyph Buttons Arranged in a Grid Like Layout

■ Lab Exercise: Home Screen Navigation using Glyph Buttons

■ App Home Screen Navigation

● Build Data Capture Form

○ User input,

○ Keyboard,

○ Adding to database

● Sensors

○ Taking pictures

■ TCameraComponent

■ Taking a Picture with a Mobile Device Camera

■ Saving a Picture to the Device Photo Library

■ Using a Picture from the Mobile Device Photo Library

■ Sharing or Printing a Picture

○ Orientation

○ Location sensor

■ LocationSensor - Latitude and Longitude

■ Reverse Geocoding

■ Orientation Sensor - three-axis tilt, distance and heading,etc.

■ Accelerometer (Motion Sensor)-acceleration, angle, state, and speed of

the device motion.

■ LAB Exercise: Create the Capture Data Form

○ Adding to database

● Build Data Output

○ Exporting and reporting

■ HTML with embedded images (see below)

■ JSON (with Base64 embedded images)

○ Share sheet

● Architecture Considerations

○ Android - Async dialogs, but don’t bother getting into services.

○ iOS

○ How does Windows and macOS figure in?

■ Rapid prototype on Windows

● App Store Publishing

○ Google Play Store

○ Apple App Store

For reporting we will use the following to create a single HTML file with the image data

embedded using Data URIs and Base64 encoding

………………………

